This thesis "Machine Learning-Based Classification of Liver Steatosis Using Bioimpedance Spectral Features" by Noura Hanafy (2025), investigates the use of bioelectrical impedance analysis (BIA) and machine learning (ML) to non-invasively detect and classify liver steatosis.

Problem Statement

Liver steatosis, or fatty liver disease, is an increasingly prevalent global health issue that can lead to severe complications like cirrhosis and carcinoma. While liver biopsy is the diagnostic "gold standard," it is invasive, time-consuming, and carries risks. Standard non-invasive methods like BIA often face limitations in accuracy due to physiological variability, low data variability, and the "curse of dimensionality" when handling highdimensional spectral data.

Methodology

The research employed a quantitative

- design to build a predictive model following a three-step workflow:
 - Input Data: The study utilized
 Bioimpedance Spectrum (BIS)
 measurements consisting of 72 folders
 of experimental data. Data
 augmentation was applied to increase
 the small sample size (71
 observations) and improve model
 robustness.
 - Feature Extraction & Dimensionality
 Reduction: To manage the 30 initial
 features, various linear and nonlinear
 techniques were tested, including
 Principal Component Analysis (PCA),
 Kernel PCA, Singular Value
 Decomposition (SVD), Autoencoders, tSNE, Cole-Cole model, and Wavelet
 Transform.
 - Classification: Multiple nonlinear classifiers were evaluated to handle the complex, non-linear nature of the dataset, including Nonlinear SVM,

Random Forest, k-Nearest Neighbors (kNN), Naive Bayes, Quadratic Discriminant Analysis (QDA), Ensemble Learners, and Deep Learning.

Key Findings

- Data Characteristics: Initial ANOVA
 tests on raw data showed no
 significant difference between groups
 (p > 0.05), but Z-score standardization
 and Min-Max normalization
 successfully highlighted significant
 differences (p < 0.05), making the data
 more suitable for classification.
- Model Performance: The study compared the accuracy of different feature extraction-classifier combinations. Nonlinear dimensionality reduction techniques like Kernel PCA and the Cole-Cole model were expected to yield higher performance due to their ability to capture intrinsic data geometry.

Correlation: Correlation matrices
 revealed that some techniques, such
 as Wavelet Transform, produced highly
 correlated features, which typically
 resulted in poorer classifier
 performance.

Conclusion

The thesis concludes that integrating ML with bioimpedance spectral features provides a promising, cost-effective, and non-invasive alternative for diagnosing liver steatosis. By utilizing standardization and advanced dimensionality reduction, ML models can effectively overcome the limitations of raw bioimpedance data to achieve reliable classification.